Phenological records as a complement to aerobiological data.

TitlePhenological records as a complement to aerobiological data.
Publication TypeJournal Article
Year of Publication2011
AuthorsTormo, R., Silva I., Gonzalo A., Moreno A., Pérez R., & Fernández S.
JournalInternational journal of biometeorology
Volume55
Pagination51-65
Accession Number20354733
KeywordsAerobiology, Allergy, Forecasting, Phenology, pollen, Pollen trap
Abstract

Phenological studies in combination with aerobiological studies enable one to observe the relationship between the release of pollen and its presence in the atmosphere. To obtain a suitable comparison between the daily variation of airborne pollen concentrations and flowering, it is necessary for the level of accuracy of both sets of data to be as similar as possible. To analyse the correlation between locally observed flowering data and pollen counts in pollen traps in order to set pollen information forecasts, pollen was sampled using a Burkard volumetric pollen trap working continuously from May 1993. For the phenological study we selected the main pollen sources of the six pollen types most abundant in our area: Cupressaceae, Platanus, Quercus, Plantago, Olea, and Poaceae with a total of 35 species. We selected seven sites to register flowering or pollination, two with semi-natural vegetation, the rest being urban sites. The sites were visited weekly from March to June in 2007, and from January to June in 2008 and 2009. Pollen shedding was checked at each visit, and recorded as the percentage of flowers or microsporangia in that state. There was an association between flowering phenology and airborne pollen records for some of the pollen types (Platanus, Quercus, Olea and Plantago). Nevertheless, for the other types (Cupressaceae and Poaceae) the flowering and airborne pollen peaks did not coincide, with up to 1 week difference in phase. Some arguments are put forward in explanation of this phenomenon. Phenological studies have shown that airborne pollen results from both local and distant sources, although the pollen peaks usually appear when local sources are shedding the greatest amounts of pollen. Resuspension phenomena are probably more important than long-distance transport in explaining the presence of airborne pollen outside the flowering period. This information could be used to improve pollen forecasts.